

TNT - 설계제안성

TNT

TNT는 경기대학교의 강구조학회 TNT팀으로서, 젊은 패기로 TNT와 같은 폭발적인 열정으로 이루어진 학생들로 이루어진 팀입니다. 지진 안전 학회로 강구조 내진에 관하여 연구하는 팀입니다.

지도교수 : 최병정 교수님

팀장

팀원

팀원

팀원

하치웅

김세원

최유리

박세영

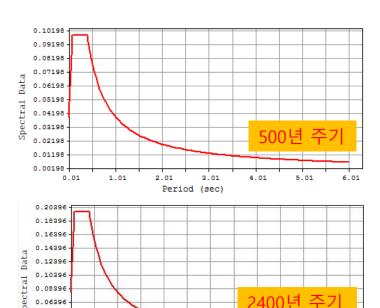
3D Modeling 디자인 설계 물성치 실험 적산

구조 해석 구조 계산 구조 해석 PPT 작성

설계 개요 _ 규정 분석 & 설계 목표

대회 주제: 목표 성능 수준을 고려한 구조물의 내진설계

➡ 구조물의 내진 설계 목표와 성능수준을 이해하고 재현주기에 따른 설계를 필요로 함


✓ 재현주기 500년 : 기능수행,즉시복구,

장기복구/인명보호

5.01

✓ 재현주기 2400년 : 붕괴방지

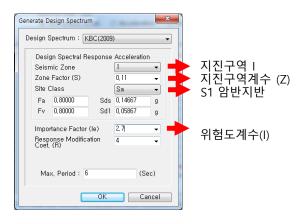
✓ 파괴가속도: 0.7g 에서 파괴

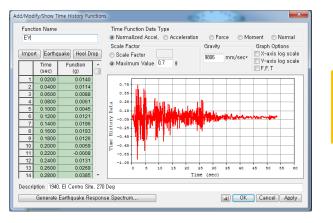
Period (sec)

0.04396 0.02396 0.00396

1.01

내진설계 목표 목표 지진 하중

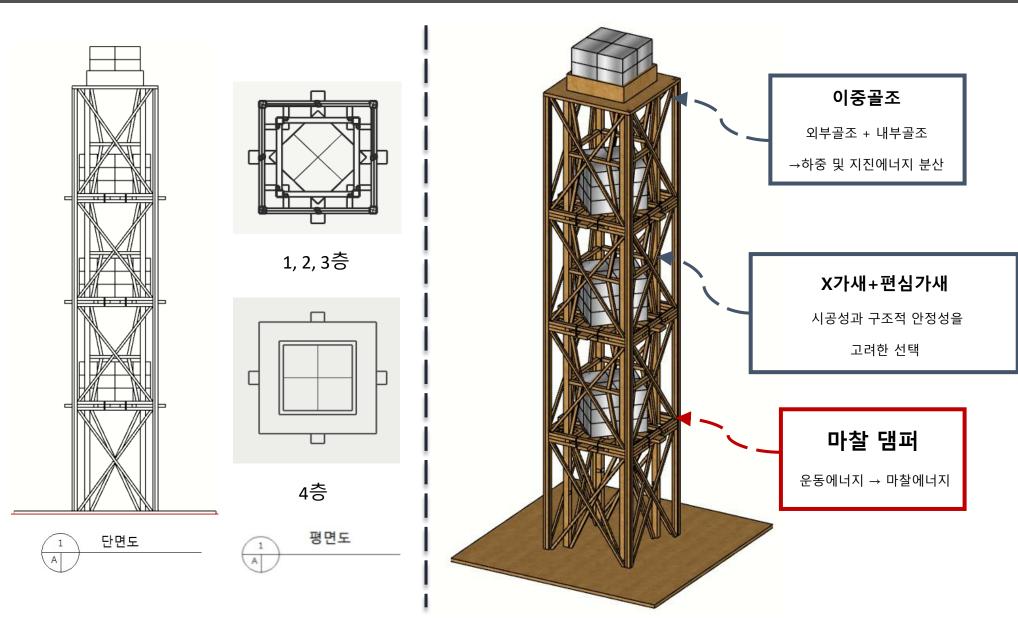

-지반종류: S1 암반지반


-지진구역: 1

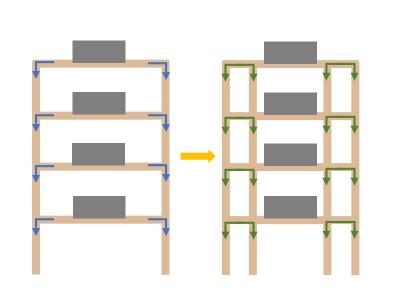
-지진구역계수(z): 0.11g

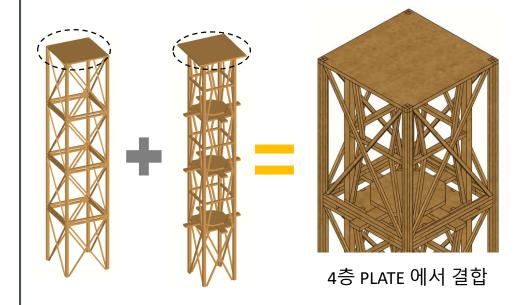
-위험도계수(I): 2.7(500년 주기)

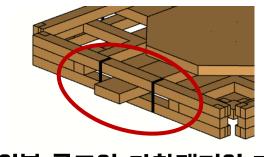
5.4(2400년 주기)



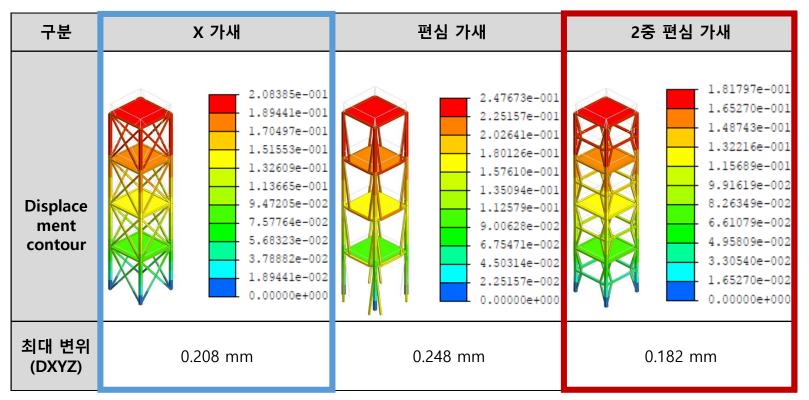
El Centro Site(1940) 지진파

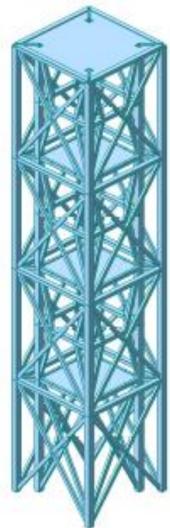

최종 모델 설계 도면 & 주요 핵심 기술




설계 CONCEPT _ 이중 골조

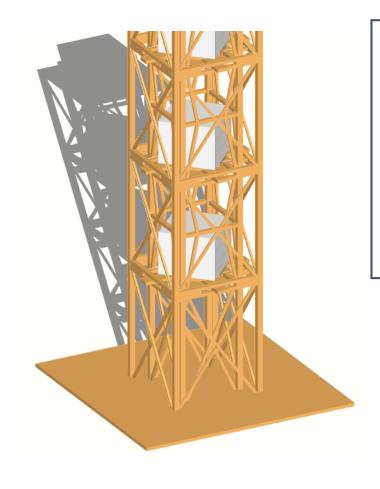
- ✓ 기둥 하나 당 부담하중 저감
- ✓ 수평력인 지진에 대하여 더욱 효과적으로 저항
- ✓ 마찰댐퍼 효과 상승
- ✓ 기둥 개수는 늘어나지만PLATE의 면적 감소로 경제성 ↑


외부 골조와 마찰댐퍼의 마찰


설계 CONCEPT _ 가새

가새 최대 변위 검토

비교적 시공성, 강성 ↑ → 외부골조에 적용 변위가 가장 작아 → 하중을 직접적으로 받는 내부골조에 적용


"시공성과 강성을 고려한 최적 설계"

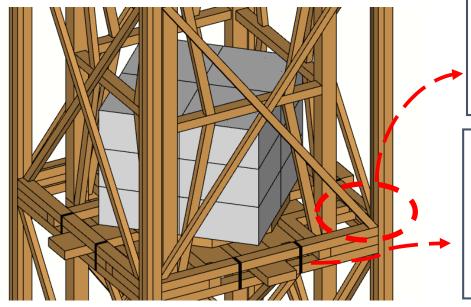
선택 가새 적용 모습

설계 CONCEPT _ 핵심기술 (<u>마찰 댐퍼</u>)

층면진 시스템 및 마찰댐퍼

- ✓ 구조물 1, 2, 3층에 위치하여 건물 지진 수평력에 저항
- ✓ 외부골조와 연결되어있는 십자 플레이트 + 기본 바닥플레이트
 - 십자 플레이트가 기본 바닥판 위에 위치하고 십자 플레이트의 끝이 외부의 보를 지나게 설계하여 **면진효과**
- ✓ 하중블록이 십자 플레이트 위에 위치하여 지진력 발생시 보와 플레이트 마찰효과

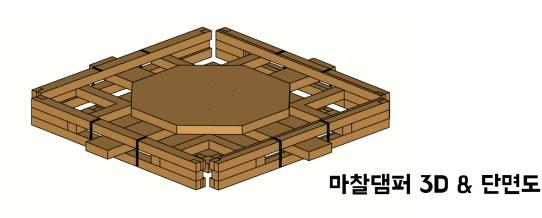
지진파에 의한 건물의 운동에너지

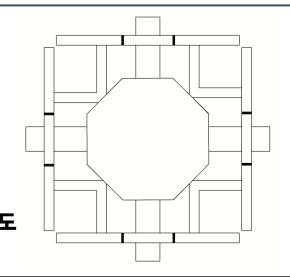

보와 십자 플레이트 + 바닥판과 십자 플레이트의 마찰에너지

"운동에너지 소산으로 인한 흔들림 감쇠효과"

설계 CONCEPT _ 핵심기술 (<u>마찰 댐퍼</u>)

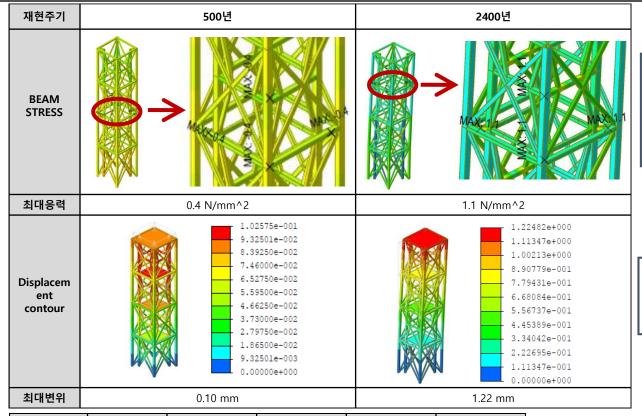
변위제한 및 외 내부 일체화




✓ 내부 골조와 외부 골조를 일체화시키는

Outrigger

✓ 내부에 발생하는 힘 외부로 전달


- ✓ 면줄을 활용하여 마찰댐퍼의 변위 제한(하중블럭의 기둥과 보에 직접적인 접촉 제한)
- ✓ 면줄을 감고 접착제로 보강

최종 모델 해석

2400년 빈도 지진을 적용 시켰을 때 3층과 4층 사이 외·내부 연결부위에서 파단을 유도하였다.

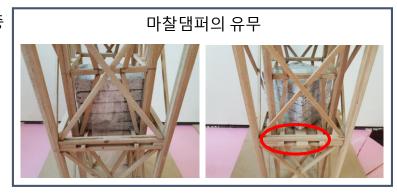
대체적으로 **저층**일수록 **변위가 줄어**드는 **안정적 구조물**로 판단 할 수 있다.

구분	1차 모드	2차 모드	3차 모드	4차 모드	5차 모드	
Vibration Mode Shapes						
고유진동수	7.28		13.13	26.87		

$$T = \frac{1}{f}$$

고유진동수는 7.28 ~ 13.13 사이로 예상할 수 있다.

실제 거동 및 가속도 비교 실험



마찰 댐퍼의 유무를 통한 응답가속도 감소효과 입증

✓ 실험조건

적재 하중 : 각 층 마다 2kg (총 4kg)

✓ 실험 방법

- 1. 마찰댐퍼를 적용한 것과 적용하지 않은 것 2가지 구조물 샘플을 준비한다.
- 2. 구조물을 운반용 카트 위에 고정하고 가속도 센서(휴대폰 APP)를 카트와 구조체 위에 설치한다.
- 3. 카트를 흔들어 지진가속도가 1.0g에 도달하도록 하여 그때의 최대 응답가속도를 측정한다.

✓ 실험결과

구분	하중블록 고정(m/ s^2)	마찰댐퍼 이용(m/s²)		
1차	19.5	18.4		
2차	19.0	18.7		
3차	19.1	18.3		
평균	19.2	18.5		

마찰댐퍼의 응답가속도 감소효과 확인

본 구조물(4층)에서는 더 큰 효과를 예상

예산 내역 _ 경제성 분석

구분	기본부재	품명	산출	EA	단가(백만원)	금액(백만원)	
	PLATE	슬라브	12cm x 12cm x 4개	4장	100	400	
		마찰댐퍼	20cm x 2cm x 6개				
		하중블록판	10cm x 10cm x 4개				
내부골조	STRIP	기둥	21.8cm x 64개	37개	10	370	
		보	10cm x 12개				
		편심가새	10cm x 48개				
		x 가새	22.6cm x 8개				
	STRIP	기둥	83.8cm x 16개	42	10	420	
외부골조		보	15cm x 24개				
지구글꼬		x 가새	25.3cm x 32개				
	면줄			6	10	60	
접합부	본드			2개	200	400	
총계	1650 (백만원)						

규정 제한 2400(백만원)에 비하여 750(백만원) 남는 경제적 설계